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   Learning Objectives 



Learning Objectives 

 Objective 1: Simulate dynamic response of a Single Degree of 
Freedom (SDOF) system under free vibration using time integration 
methods: 1) Central Difference Method, and 2) Newmark Methods 

 

 Objective 2: Compare simulation results with experimentally 
measured responses 

 

 Objective 3: Understand causes of the observed errors in the time 
integration methods 



  Numerical Evaluation of Dynamic 
Response of SDOF System 



Time Stepping Methods (1) 

 It is hard to get analytical solutions for responses of the structures 
under arbitrary excitations. 

 

 In this case, numerical solutions are suitable. 

 

 It should be noted that all numerical integration methods have issues 
such as 

 Accuracy 

 Convergence 

 Stability 

 

 Equation of motion is expressed in a form of second order differential 
equation in structural dynamics 

 

)0(   )0(  such that 

)(or      )(),(

00 uuuu

tumtpuufucum gs











Time Stepping Methods (2) 

 For time stepping methods, the continuous equation of motion should 
be discretized in time domain as follows 

 

 

 

 And the time stepping method provides solution algorithm to get 
dynamic responses at each time station 
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Time Stepping Methods (3) 

 There are many different methods 

 Central Difference Method (CDM) 

 Newmark Methods (i.e. linear & average acceleration methods) 

 Wilson θ Method 

 Other time integration methods 

 Houbolt Method 

 Hilber-Hughes-Taylor Method 

 SSpj Method 

 Symmetric Successive Quadrature Method 

 Etc. 

 

 In this lecture note, the first two methods (CDM  and Newmark Method) will be 

presented. 

 



Numerical Solution Based Interpotation of  
Excitation Function (1) 

 

 

 

 

 

 

 

 Response in between ti and ti+1 can be considered to be the sum of 

 Free vibration due to initial conditions 

 Response due  to step force pi with zero initial conditions 

 

 Response due to ramp force            with zero initial conditions 
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Numerical Solution Based Interpotation of  
Excitation Function (2) 

 

 

 

 

 

 Then, the recurrence formula can be established after substituting 

 

 

 

 

 

 If the time step Δt is constant, the coefficients A, B,…, D’ need to be 

computed only once. 

 

 For the coefficients, refer to the following table 
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Numerical Solution Based Interpotation of  
Excitation Function (3) 

 
 Coefficients in Recurrence Formula ( ζ < 1) 



Example 

 
 Initial conditions 

 Substituting  ωn=6.283, k=10 and Δti=0.1 in the equations for A, 
B, C, ..., D’ gives 

   A=0.8090       B=0.09355       C=0.00955       D=0.00955 

   A’=-3.6932     B’=0.809          C’=0.1847        D’=0.1847 

  Apply the recurrence equation 

 The resulting computations are summarized in the Table. 

 Numerical solution of displacement 
 



Example 

 
 Numerical solution of velocity 



  Central Difference Method 



Central Difference Method (1) 

 
 
 
  

 
 
 
 

 Velocities at the time stations ti-1/2 and ti+1/2 are as follows 
 
 
 
 

 Then the velocity and acceleration at time station ti are expressed as 
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Central Difference Method (2) 

 Substituting Equation (1) and (2) into the equation of motion, 
 
 
 
 
 

 Modifying the equation 
 
 
 
 
 
 

 Then the effective stiffness and load are defined as 
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Central Difference Method (3) 

 
 
 
 
 
 

 The solution ui+1 at time i+1 is determined from the equilibrium condition at 
time I without using the equilibrium condition at time i+1.  Such methods are 
called Explicit Method. 
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Computational Procedures for CDM 

  Step 1) Compute m, c, and k 
 

  Step 2) Initial conditions 
 

  Step 3) Set time step size  Δt (<Tn/π, this upper limit is because of stability)  

 
  Step 4) Compute coefficients 

 
 
 
 
 

  Step 5)  Compute 
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Computational Procedures for CDM 

  Step 6) Compute the effective stiffness 
 
 
 

 Up to this step, all calculations need to be done once as initial calculations 

 
  Step 7)  For each time step, repeat the following procedures, that is,  
                  for i=0,1,2,… 

 
  Step 7-1) 

 
  Step 7-2) 

 
 

  Step 7-3)   
 
 
 

  Step 7-4)  Repeat for the next time step from Step 7-1) 
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  Newmark Methods 



Newmark Method (1) 

 Dynamic states of a vibrating structure can be described by 

 Displacement 

 Velocity 

 Acceleration 

 

  They are related through either differentiation or integration 
operations.  For example, 

 

 

 

  It is observed that with numerical differentiation, the original error 
presented in u will get expanded after the differential operation. 

 

  However, with numerical integration, the original error presented in 
the integrand (   ) will get smoothed out after the operation. 

 

 dtuu
dt

du
u  or      

u



Newmark Method (2) 

  This means that performing numerical integration operation is 
potentially of advantage in reducing or smoothing out the original error 
presented with the integrand.  As a matter of fact, this observation 
serves as the basis of many engineering based temporal discretization 
methods.  That is, instead of starting with displacements, we make 
assumptions on the variation of accelerations within a time step and 
obtain relations for velocities and displacements within the time step 
through numerical integration. 

 

  Question) Among the three state variables (         ), which one is the 
best variable to start with for numerical integration methods? 

 

  Answer) “Acceleration” 
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Newmark Method (3) 

  Let’s assume variations of acceleration during Δt to be “constant” or 

“linear” 

 

  Average Acceleration (A.A.) 
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Newmark Method (4) 

   Linear Acceleration (L.A.) 
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Newmark Method (5) 

  Introducing two integration parameters γ  and β 

 

 

 

 

 

 

  A.A.    

 

  L.A.   
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Formulation of Newmark Method for  
Linear System (1) 

  Using incremental formulation, 

 

 

 

 

  Rewriting Equation (3) 
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Formulation of Newmark Method for  
Linear System (2) 

  Then, the equilibrium equation becomes 

 

 

 

 

 

 

Where 

 

 

 

 

 

  Once we know                     ,                     can be computed from 
Equation (5) 
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Formulation of Newmark Method for  
Linear System (3) 

  However, it is recommended to compute         from the equilibrium 
equation at time ti+1. 

 

 

 

 Remarks:  For nonlinear problems, use this equation for       to ensure 
dynamic equilibrium at the end of the time step 
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Computational Procedures for  
Newmark Method (1) 

 
 

  Choose  one  
 
 
 
 

  Step 1) Compute m, c, and k 
 

  Step 2) Initial conditions 
 

  Step 3) Set time step size  Δt 

 
  Step 4) Compute coefficients 
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Computational Procedures for  
Newmark Method (2) 

  Step 5) Compute the effective stiffness 
 
 
 

 Up to this step, all calculations need to be done once as initial calculations 

 
  Step 6)  For each time step, repeat the following procedures, that is,  
                  for i=0,1,2,… 

 
  Step 6-1) 

 
  Step 6-2) 

 
 

  Step 6-3)   
 
 

  Step 6-4) 
 
 

  Step 6-5) 
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Computational Procedures for  
Newmark Method (3) 

   
  Step 7) Repeat for next time step 

 
 

 Remarks on Stability Conditions 
 
  For A.A. 

 
 

    A.A. is unconditionally stable 
 
 

 
  For L.A.  

 
 

L.A. is conditionally stable 
 

 
 Note that in case of multi DOF systems, stability matters since Tn in the criteria 
is the natural period of the highest mode 
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Stability and Computational Errors 



Stability and Computational Errors (1) 

   
 Stability 

  Numerical procedures that lead to bounded solutions if the time 
step is shorter than some stability limit are called conditionally stable 
procedures. 
  Procedures that lead to bounded solutions regardless of the time-
step length are called unconditionally stable procedure. 
  The average acceleration method is unconditionally stable. 
  The linear acceleration method is stable if Δt / Tn < 0.551. 
  The central difference method is stable if Δt / Tn < 1/ π. 

Spectral radius(ρ (A)) is  a modulus of eigenvalue  
of operator matrix, A. 

 
If ρ (A) this is less than 1, then the method is  

unconditionally stable like  
Newmark method (A.A.),  

Wilson-θ method and Houbolt method. 
 

If ρ (A) this is greater than 1, the method is  
conditionally stable like CDM. 

Unconditionally 
stable 

Conditionally 
stable 



Stability and Computational Errors (2) 

   
 The figure below shows that some numerical methods may predict that 
the displacement amplitude decays with time, although the system is 
undamped, and that the natural period is elongated or shortened. 



Stability and Computational Errors (3) 

 The figure below shows the AD (amplitude decay) and PE (period 
elongation) in the four numerical methods as a function of Δt / Tn. 

 The AD in Wilson's  

  method implies that  

  this method introduces  

  numerical damping. 

 The central difference  

  method introduces  

  the largest period  

  error and has stability  

  limit of Δt / Tn=1/π. 
 



Stability and Computational Errors (4) 

  The choice of time step also depends on the time variation of the 
dynamic excitation, in addition to the natural vibration period of the 
system. 

   Figure (c) on the previous page suggests that Δt = 0.1 T would 
  give reasonably accurate results. 
  The time step should also be short enough to keep the distortion 
  of the excitation function to a minimum. 



 Hands-on Experiment Project 



Problem Statement (1) 

 Conduct free vibration test of an one-story shear building 
structure and measure accelerations under free vibration, and 
integrate accelerations to get experimental velocities and 
displacements. 

 

 

 

 

 

 

 

 Implement the time integration methods explicitly presented in 
this lecture note. MATLAB programming language is recommended. 

 

 Using the time integration methods (Central difference method and 
Newmark methods), compute numerical responses 
(accelerations, velocities and displacements) and compare 
with the measured dynamic responses.  

Accelerometer 

0
u

Accelerometer Release 

Free Vibration 

Fixed support Fixed support 



Problem Statement (2) 

Note) The NI LabVIEW VI program automatically determines the initial 
displacement and velocity to be used in subsequent numerical 
computations by time integration methods. (Please note that the 
initial displacement does not need to be actual u0 which is applied in 
the lab test. The initial displacement could be the one at any moment 
when the actual measuring starts.) 

 



Important Notes for Test 

 Please follow procedures in “8. Users manual for NI LabVIEW VI 
programs”. 

 

 You are provided with the geometrical dimension of the test structure 
as well as the calibration information for the sensors. Therefore, you 
can compute the effective stiffness. The mass of floor of the structure 
(including the accelerometer and mounting plate) is 1550.0 gram. 
Also, sensor readings are given in gravities (1g=9.8 m/sec2). The 
saturation level (maximum reading) for the two accelerometers is +/-
50g (it depends on the sensors to be used). Note that in some cases 
there may be an offset in the accelerometer. However, the saved 
acceleration data has no DC-offset because the NI-LabVIEW program 
automatically removes the DC-offset before saving. 

 

 The NI-LabVIEW VI program will automatically determine the 
effective mass value, the natural frequency, and the damping factor 
based on the logarithmic decrement method and the provided 
stiffness value. 

 



Guides for Reports 

 Write a full report using the instructions provided in class. Organize your 
report into sections (e.g. Introduction, Procedures, Results, Discussion, 
Summary, References). Write concisely and clearly. 

 

 Include the following: (1) A schematic diagram and description of the test 
equipment. (2) Hand-calculated effective stiffness. (3) Natural frequency, 
and damping factor measured from test. (4) Free-body diagrams, and the 
equation of motion for your mathematical model. (5) Plots of the free 
vibration responses measured from the experiment. (6) Plots of the 
numerical responses computed by the NI-LabVIEW VI program. (7) Plots 
of the numerical responses computed by your own codes. and (8) 
Assumptions and explanations for differences between numerical 
responses and test measurements. 

 

 Make plots of free vibration responses from experiments and numerical 
computations on the same graphs so that they are explicitly compared. 

 

 



 Test Setup and Equipment 



Test Setup 

 

AnyloggerS-V/ICP 

MSP-100 

Accelerometer with magnetic mount 

NI-PXI 8105 in NI-PXI 1042  
NI- LabVIEW VI Program 



Test Structure 

500 

108.2  

2 

Aluminum plate (2EA) 
(E=70 Gpa) 

Steel plate (4EA) 

Unit of length : mm 

Bolts (12EA) 

4.166 

#8-32 Thread 

4.166 25.4 
6.858 

3.572 

12.3 
2 

108.2 

108 

305 

12.3 

Acryl plate (2EA) 

Total weight :1550.0 g (including sensor) 



Test Structure- Drawing 

Unit of length : mm 



Test Equipment 

 NI-PXI 8105 Controller 

 ICP type Dytran triaxial accelerometer (3093B1) 

 One-channel AnyLogger (Korea Maintenance Co., LTD): AnyLoggerS-
V/ICP. 

 NI-LabVIEW 8.6 



NI-PXI 8105 Controller 

 Intel Core Duo Processor T2500(2.0 GHz dual 
core)   

 512 MB (1 x 512 MB DIMM) dual channel 667 
MHz DDR2 RAM standard,4 GB (2 x 2 GB DIMMs) 
maximum   

 Integrated I/O  
 10/100/1000BASE-TX Ethernet  

 4 Hi-Speed USB ports  

 ExpressCard/34 slot  

 DVI-I video connector  

 GPIB (IEEE 488) controller  

 RS232 serial port   

 IEEE 1284 ECP/EPP parallel port   

 Integrated hard drive  

 Internal PXI trigger bus routing   

 Watchdog timer Software   

 Hard drive-based recovery image PXI System  

Specification 



Dytran Accelerometer (3093B1) 

Model 3093B1 Dytran Triaxial Accelerometer 

Specification Value Uint 

Weight 13.5 Grams 

Size(Height x Width x Depth) 0.54 x0.59 x 0.59 Inch 

Sensitivity 100 mV/G 

Ranges +/-50 G 

Frequency Response 2 to 5000 Hz 

Equivalent Electrical Noise 0.007 G, RMS 

Linearity 1 % F.S. 

Temp. Range -60 ~ +250 °F 

Supply Current Range each axis 2 to 20 mA 

Supply Voltage Range each axis +18 to +30 VDC 

Output impedance 100 OHMS 



AnyLogger 

AnyloggerS-V/ICP for acceleration transmitter 
AnyLoggerS-B for strain transmitter 

 



AnyLogger 

Contents AnyloggerS-V/ICP AnyLoggerS-B 

Support Num. of Channel 1 1 

Input Voltage Range -5 ~ 5V 0 ~ 3V 

Gain 1,2,5,10,20,50,100 50,100,250,500,1000,2500,5000 

Programmable 10~1000Hz (10,20,50,100,200,500,1000) 10 ~ 1000Hz 

Lower Pass Filter   10,20,50,100,200,500,1000 

Prog. Offset 0 ~ 5V(12Bit) 0 ~ 3.3V(12Bit) 
Max Sampling Rate 1000Hz 1000Hz 

Exciting Voltage 24V(Only ICP Type) 3.3V±0.5% 

Connector BNC Connector 4Pin Circular Connector 

SIM Usage No Yes 
Power Consumption 

(w/o sensor) 
150mA 100mA(w/o SIM) 

Internal Battery Li-ion Rechargable 1500mAh x 2EA(Serial) Li-ion Rechargable1500mAh x 2EA(Serial) 

Ext. Power Requirement 5V 5V 

Operation Temperature -10 ~ 80℃ -10 ~ 80℃ 

Sync. Accuracy < 10ms < 10ms 

Dimension 800 x 973 x 353 800 x 883 x 353 
Weight 210g 210g 

ADC Resolution Differential 16Bit Differential 16Bit 

Measurement Accuracy F.S. 0.1% F.S. 0.1% 

Sensor Connectibility Voltage or ICP source Bridge type sensor 

Signal Ripple Depends on Gain Depends on Gain 

Communication Bluetooth v1.2 class1 18dBm(w/o ant.)  Bluetooth v1.2 class1 18dBm(w/o ant.)  

Radio Frequency Range 2.402 ~ 2.480GHz 2.402 ~ 2.480GHz 

Transmission Method FHSS(freq. Hopping Spread Spectrum) FHSS 

Modulation Method GFSK(Gaussian-filtered Freq. Shift Keying) GFSK 

Approvals MIC, FCC, CE MIC, FCC, CE 

Specification 



NI-LabVIEW 8.6  

 LabVIEW (Laboratory Virtual Instrument Engineering Workbench) 

is a graphical programming language that uses icons instead of lines 
of text to create applications. 

 
 In contrast to text-based programming languages, where 
instructions determine the order of program execution, LabVIEW 
uses dataflow programming, where the flow of data through the 
nodes on the block diagram determines the execution order of the 
VIs and functions. VIs, or virtual instrument, are LabVIEW programs 
that imitate physical instruments.  

VI Block Diagram Front Panel 



   Users Manual of NI-LabVIEW VI 
Program 



1) Set Parameter – to “Monitoring 
Start” and click “Set” 

2) Set Path – Create empty files in  
“Path” where the original raw Acc. 
data will be saved 

3) Select Mode “RAW DATA SAVE 
MODE” – Save the original raw 
data to the file 

4) Set files- Create files where 
measured and computed data will 
be saved and link them to this 
panel by choosing them. 

5) Sampling Rate – Default 1KHz 

6) Number of data – Input the number 
of data for display and analysis 

7) Set Filter Type – Choose 
“Bandpass” 

8) Set Filter Order 

9) Set Low Cutoff Freq 

10) Set High Cutoff Freq 

11) Run- Run the front panel while the 
structure is vibrating 

12) Stop – After more than specified 
times (# of Data/ Samp. Rate), 
click “Stop”. Users can control the 
monitoring time. 

 

Users Manual of LabVIEW VI Prog. (1) 
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Users Manual of LabVIEW VI Prog. (2) 

During testing, measured raw data will 
be saved. Next steps are for computing 
Test Acc., Test Vel. and Test Disp. based 
on saved raw data.  

And in this step, Ini. Disp., Ini. Vel. and 
effective mass will be presented 
automatically from the test data and 
hand calculated stiffness value. 

 

13) Select Mode “ANALYSIS MODE” 
– Compute test Acc., Vel. and Disp. 
and save all the computed data to 
the file  

14) Stiffness– Input stiffness of the 
test structure to get the effective 
mass of the vibration system using 
the following equation. 

 

 

 

15) Run- Run the front panel. Test Acc., 
Test Vel. and Test Disp. will be 
plotted. And Ini.Disp., Ini. Vel., and 
Effective Mass will be displayed as 
shown in the next slide. 
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Users Manual of LabVIEW VI Prog. (3) 

Next step is to run Central  

Difference Method to simulate the 
analytical Acc., Vel. and Disp. 

 

16) Select Analysis Method 
“Central Difference 
Method” 

17) Copy Data – Copy and paste 
measured Ini. Disp. Ini. Vel. 
and automatically computed 
effective mass to 
corresponding empty text 
box. 

18) Delta t – Input dt  

19) Run- Run the front panel. 
Wait until computed 
responses are plotted. It may 
takes several minutes 
depending on the system. 
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Users Manual of LabVIEW VI Prog. (4) 

Results of Central Difference Method 



Users Manual of LabVIEW VI Prog. (5) 

These steps are to run Newmark 
Method to simulate the numerical 
Acc., Vel. and Disp. 

 

16) Select Analysis Method 
“Newmark Method” 

17) Copy Data – Copy and paste 
measured Ini. Disp., Ini. Vel. 
and automatically computed 
effective mass to corresponding 
empty text box. 

18) Delta t – Input dt  

19) Beta & Gamma - Input beta 
and gamma values (default beta  

 and gamma is 0.25 and 0.5, 
respectively for A.A.)  

20) Run- Run the front panel. Wait 
until computed responses are 
plotted. It may take several 
minutes depending on the 
system. 

 

       # Note that Newmark method 
can be run right after CD 
Method analysis and CD method 
also can be run right after 
Newmark method analysis. 
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Users Manual of LabVIEW VI Prog. (6) 

Results of Newmark Method (Average Acceleration Method) 



 Two-stack sequences were used 

 

 In the first frame, users should 
define correct IP address and 
port number based on the 
equipments following the 
ANYLOGGER ® manual. 

 In this frame, the raw data will be 
saved at the given path 

Users Manual of LabVIEW VI Prog. (7) 

First Stack of Block Diagram of VI Program 

Set IP address and Port number 



 In the second frame, original 
saved raw data is read from the 
path for calibration and final 
saving. 

 Wavelet denoising filter is used 
to remove noise before 
conversion to data in physical 
units. 

 The Acc. data is converted to 
Vel. and Disp. data using  
integration 

 Bandpass filter is used to pass 
only the frequency band of our 
interests. 

 From the Disp. data, Init. Disp. 
and Vel. are automatically 
obtained and displayed on the 
front panel. 

 Central Difference method and 
was implemented using 
MATALAB script to obtain 
numerical response of Disp., Vel. 
and Acc. based on the Init. 
Disp., Init. Vel., the effective 
mass, and hand-calculated 
stiffness 

      
    * Note) Users may need to 

adjust the wavelet denoise.vi for 
the different  vibration system 
 
 
 

Users Manual of LabVIEW VI Prog. (8) 

Sensitivity of accelerometer (V/g) 

Second Stack of Block Diagram of VI Program 

CD Method 

Wavelet denoise.vi 



Newmark  Method 

Users Manual of LabVIEW VI Prog. (9) 

 Newmark method was 
implemented using math 
script to simulate analytical 
response of Disp., Vel. and 
Acc. based on the Ini. Disp., 
Ini. Vel., effective mass, 
stiffness, beta and gamma 

 

 



 Experimental Test Results 



Test Results (1) 

 The stiffness is computed as   

 

 

 

 The damping factor and natural frequency were identified as 
0.00517105 (less than 1%) and 4.329 Hz, respectively. 

 

 

 Based on this measurements and calculation, the effective mass was 
estimated as 
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Test Results (2) 



Test Results (3) 
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