
Lecture 3: Digital Signal Processing for Analysis of 

Vibration Response 



Outline 

1. Learning Objectives 
2. Fourier Series for Periodic Functions: Real and Complex 

Series 
3. Fourier Integral Transforms for Non-periodic Functions 
4. Discrete Fourier Transforms 
5. Fast Fourier Transforms 
6. Digital Signal Processing 
7. Analyses of Digital Signals 
8. Hands-on Experiment Project 
9. Test Setup and Equipment 
10. Users Manual of NI-LabVIEW VI Program 
11. Reference 



   Learning Objectives 



Learning Objectives 

 Objective 1: Understand fundamental transforms for frequency-
domain analysis of dynamic signals: Fourier Series, Fourier Integral 
Transform, Discrete Fourier Transform, Fast Fourier Transform, etc. 

 

 Objective 2: Understand basics of digital signal processing 

 



  Fourier Series for Periodic Functions: 
Real and Complex Series 



Periodic Functions 

 

 

 

 

 

 

 

 

 

 

 The periodic function repeats itself indefinitely 
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Real Fourier Series (1) 

 For any periodic function, a Fourier Series can be found as 

 

 

 

 The coefficients are as follows 
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Real Fourier Series (2) 

 Question) How do we use this representation to determine the 
solution for the system response? 

 

  We know the steady-state response (amplitude and phase angle) for 
a SDOF system with harmonic input.  By superposition we can find 
the response to the Fourier series representation of the input. 

 










11

0 )()()(
n

s
n

n

c
n tutuutu

k

a
u 0

0  Static deflection 

cosine terms sine terms 

)cos(
)2()1(

/
)( 1

222
n

nn

nc
n tn

rr

ka
tu 







)cos(
)2()1(

/
)( 1

222
n

nn

ns
n tn

rr

ka
tu 







n

n

n
r


1

 Frequency ratio 



Example-1 (1) 

 Determine a real Fourier series representation of a square wave 

 

 

 

 

 

 

 

 Since p(t) is a odd function, coefficients of cosine terms 
(a0=an=0)will be zero. 
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Example-1 (2) 

 When T1=2π and p0=1 
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Example-2 (1) 

 Determine a Fourier series expression for the steady-state response 
of an undamped SDOF system subjected to the previous square-wave 
excitation p(t).  ωn=6Ω1. 

 

 

 

 

 

 Recalling the steady state response 

kpUtptpt
r

U
tup /   )sin()(  tosubjected    )sin(

1
)( 0002

0 








,...5,3,1

1
,...5,3,1

1
0 )sin()sin(

4
)(

n
n

n

tnptn
n

p
tp



m 

k 

u(t) 

p(t) 








,...5,3,1

12
)sin(

1

/
)(

n n

n tn
r

kp
tu



Example-2 (2) 

 

 As                               , 

 

 

 

 

 

 We can graph the spectra of the response amplitude as follows  
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Complex Fourier Series 

 The complex Fourier series takes the form 

 

 

 

 Note that the periodic function p(t) is real, which is represented by 
including negative n. n=0, ±1, ±2, ±3,… 

 

 The complex coefficient is 

 

 

 

 Note that  
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Example 3 – (1) 

 Determine an expression for the Fourier coefficients      of the 
Complex Fourier Series representation for the square wave in 
Example 1 

 

 Evaluating Equation (1), 

 

 

 

 

 

 Note that Ω1T1=2π 
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Example 3 – (2) 

 Then the Complex Fourier coefficients are given by 

 

 

 

 

 

 

 Plotting its spectra, real parts are zero and only imaginary parts are 
non-zero. 
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  Fourier Integral Transform for 
Non-periodic Functions 



Fourier Integral Transforms (1) 

 When the function to be represented is not periodic, it can be 
represented by a Fourier integral 

 

 From complex Fourier series, we know that 

 

 

 

 

 

 We can obtain the expression for Fourier transform by letting T1∞ 
and defining ΔΩ=Ω1 and Ωn=nΩ1. 

 

 

 Then Equation (2) can be rewritten as 
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Fourier Integral Transforms (2) 

 As T1∞, ΔΩ becomes dΩ and Ωn becomes a continuous variable Ω. 

 

 

 

 

 

 Also, the Fourier transform pair can be written more symmetrically in 
the form, Ω=2πf  ,   dΩ=2πdf  
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Example 4  

 Determine the Fourier transform of a rectangular pulse 

 

 

 

 

 

 

 

 

 

 Plotting this Fourier transform, 
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  Discrete Fourier Transforms 



Discrete Fourier Transform (1) 

 Numerical computations of the Fourier Transform become a practical 
reality by development of Fast Fourier Transform (FFT) by Cooley-
Tukey in 1965. 

 

 Fourier Transform pair 

 

 

 

 

 

 

 Finite Fourier Transform 
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Discrete Fourier Transform (2) 

 Discrete Fourier Transform (DFT) 

 Sample p(t) at N equally spaced points in time interval Δt  T1=NΔt 

 

 

 Then the discrete version of finite Fourier Transform is  

 

 

 

 

 

 If the total sample time is T1, then the fundamental frequency sinusoid that fits 

within this sample time has a period T1.  Therefore, the frequency interval of the 

discrete Fourier Transform is  
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Discrete Fourier Transform (3) 

 Finally the Discrete Fourier Transform can be written as 

 

 

 

 

 

 

 Then the inverse Discrete Fourier Transform can also be written as 
(from the integral equation) 
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Discrete Fourier Transform (4) 
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  Fast Fourier Transforms 



Fast Fourier Transform 

 Various algorithms have been developed to make calculations 
efficient/fast. 

 Fast Fourier Transform (FFT) is one of the most efficient methods that 
compute the Discrete Fourier Transform.  FFT is not a new type of 
transform but rather, an efficient numerical algorithm for evaluating 
DFT. 

 

 

 

 Total N2 complex products are required to evaluate Am (m=0,1,…, N). 
But due to the cyclic nature of powers of WN, the total computational 
time can be drastically reduced.  That is, the total number of complex 
products for the FFT is (N/2)log2N. 

 For example, if N=512, then FFT operation is less than 1% of the 
original operations of DFT. 

 In conclusion, for FFT algorithm, choose a power of 2 
(2,4,8,…,1024,2048,4096…) for the number of frequency lines.  
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Example 5 

 Using FFT command in MATLAB to compute a 16-point Fourier 
transform to verify the results shown in Example 3.  Note p0 is 1. 
Compare                                      with the result from Example 3. 
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 Digital Signal Processing 



Signals Conversion: Analog to Digital 

 System Configuration for A/D Signal Conversion 

 

 

 

 

 

 

 

 

 

 Sensors output small magnitudes of voltage signals, for example, a 
few mV.  Therefore, the amplifier is used to amplify the signals. But it 
could amplify the noise too. 

 

 It is important to convert physical signals to digital signals without 
loss of information. 
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Sampling Theory 

 Shannon’s sampling theory tells that sampling frequency (fs) should be at 
least twice larger than max frequency (f0) of our interests. 

 

 

 Because  frequency above fN/2 (called Nyquist frequency: half of the 
sampling frequency) cannot be observed in the data, those values are only 
unique to              .  Above fN/2, the results are  mirror image. 
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Sampling Theory 

 If the time interval Δt is constant and the total sampling period T1 
increases, more points will be generated in frequency domain (i.e. 
higher resolution in frequency domain). But the frequency bandwidth 
will be the same. 

 

 If the time interval Δt decreases and the total sampling period T1 is 
constant, more points will be generated in frequency domain.  
However, since bandwidth increases, we will have the same 
frequency resolution. 



Example 6  

 When Δf=5Hz and 1024 samples are taken, 

 

 

 

 

 

 

 

 Whan fc=50 kHz and a total of 4096 samples are taken, 
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Anti-aliasing Filter 

 During sampling, unwanted signals could be included due to aliasing 
effect. 

 

 Since frequencies greater than f0 occurs aliasing, anti-aliasing filter 

(a kind of low pass filter) should be used to remove the higher 
frequencies. 

 

 The sampling frequency should be twice the max frequency in theory.   
However, considering that damping characteristics of anti-aliasing 
filter, it should be 2.56 or 4 times of the max frequency. 
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A/D Conversion (Quatization) 

 Depending on the number of bits in A/D converter, the resolution is 
determined. 

 

 The resolution (R) is determined as  

 

 

 Where A is the peak-to-peak value of voltage output and n is the 
number of bits of the selected A/D converter. 
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Leakage 

 Notes on FFT 

 Increasing N will increase the resolution of the FFT for constant Δt 

 Decreasing Δt will increase the max frequency obtained (bandwidth) 

 Typically averaging is necessary to get good results 

 

 DFT assumes that the sampled signal is infinitely long and periodic.  
Notice that there are discontinuity in the periodic version of this 
signal.  This discontinuity introduce additional frequency components 
into the frequency domain. 

Measured signal 

Periodic representation t f 

Sideband leakage 



Windowing 

 Thus, windowing is used to minimize these effects 

 

 Time domain segment is multiplied by a “window” before taking FFT. 

 

 Window function used to continuous signals 

 Square window 

 Hanning window 

 Hamming window 

 Kaiser-Bessel window 

 Flat-top window 

 User-defined window 



Digital Signal Processing Flow Diagram 

Analog signal Anti-aliasing filter 

ADC digitizes 
signals 

Before FFT 

Apply window 

Compute FFT 

Linear Spectrum 



 Analyses of Digital Signals 
  From NI manuals 



 For 1D signals, FFT.VI computes the Discrete Fourier 
Transform (DFT) of the input signals with a FFT algorithm. 

 Each frequency component is a dot product of the time-
domain signal with the complex exponential at that frequency. 
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 It returns the double-sided power spectrum of X. 

 NI Power Spectrum.VI uses the FFT & DFT routine to compute 
the Power Spectrum. 
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Auto Power Spectrum.VI 

 

 It computes the single-sided, scaled, auto power spectrum of 
time-domain signals. 

 It computes the power spectrum using the following equation. 

 

 

 

 

 

 

 It converts the power spectrum into a single-sided power 
spectrum. 
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Amplitude and Phase Spectrum.VI 

 Two steps to compute the single-sided and scaled amplitude 
spectrum. 

 Using the following equation, it computes two-sided amplitude 
spectrum. 

 

 

 

 

 

 Based on following equation, it converts the two-sided amplitude 
spectrum to the single-sided amplitude spectrum. 
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FFT PS(Power Spectrum).VI 

 FFT of a real signal is a complex number, having real & imaginary 
parts. 

 Power in each frequency component represented by the FFT can be 
acquired by squaring the magnitude of that frequency component 

 The power in the kth frequency component defined as 

 

 
 

 Power spectrum returns an array that contains the two-sided power 
spectrum of a time-domain signal. 

 Power Spectrum shows the power in each of frequency components. 

 The equation below compute the two-sided power spectrum from 
FFT. 
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FFT PSD(Power Spectral Density).VI 

 PSD shows the strength of variations(energy) as a function 
of frequency. 

 PSD shows at which frequencies variations are strong and at 
which frequencies variations are weak.  

 The unit of PSD is energy per frequency (width). 

 Computation of PSD is done directly by the method called 
FFT or computing autocorrelation function and then 
transforming it. 

 

 

 

 Steps of computing FFT PSD 
 

 Compute the FFT of time signals 

 Form the PS or PSD of time signals 

 Average with next computations 
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FFT Spectrum(Mag-Phase).VI 

 The FFT Spectrum (Mag-Phase) can compute Magnitude 
and Phase parts. 

 

 FFT Spectrum (Mag-Phase) can compute averaged spectrum of 
time signals. 

 

 It computes the FFT of time signals. 

 It averages the current FFT spectrum of time signals with the 
FFT spectra computed by the VI since the last time the 
averaging process was reset. 

 It returns the Mag-Phase parts of the averaged spectrum. 

 



FFT Spectrum(Real-Im).VI 

 The FFT Spectrum (Real-Im) can compute real and imaginary parts. 

 FFT Spectrum (Real-Im) can compute averaged spectrum of time 
signals. 

 

 It computes the FFT of time signals. 

 It averages the current FFT spectrum of time signal with the FFT 
spectra computed by the VI since the last time the averaging 
process was reset. 

 It returns the real and imaginary parts of the averaged spectrum. 

 



 Hands-on Experiment Project 



Problem Statement (1) 

 Conduct vibration test using a beam structure and measure 
dynamic response. 

 

 

 

 

 

 

 

 Conduct FFT-based signal processing of the acquired data using 
the provided NI-LabVIEW VI program. 



Guides for Reports 

 Write a full report using the instructions provided in class. Organize your 
report into sections (e.g. Introduction, Procedures, Results, Discussion, 
Summary, References). Write concisely and clearly. 

 

 Include the following: (1) A schematic diagram and description of the test 
equipment. (2) Plots of the time-domain vibration response data 
measured from the experiment. (3) Plots of various signal processing 
measures computed by the NI-LabVIEW VI program. 



 Test Setup and Equipment 



AnyLoggerS-V/ICP 

Test Setup and Procedures (1) 

NI-PXI 8105 in NI-PXI 1042  
NI- LabVIEW VI Program 

Connector Block  
(SCB68) 

NI PXI 6733 

Power Supply(MPJA 14604PS) 

Amplifier(AP2000) 

MSP-100 



Test Setup and Procedures (2) 

 Step1 Turn on power supply. 

 Step2 Generate excitation signals using NI-LabVIEW and send 
them through analog output board (NI-PXI 6733). 

 Step3 Under the vibration excitation, proceed the test. 



Test Structure- Drawing 

Part  Faztek Part # EA 

Part A 15QE3030L (0.3m) 4 

Part B 15EX1530L-12(1.22m) 2 

Part C 15CB4805 12 

Part D 15CB4000 4 

Part E Test specimen   

Nut 15FA3501 104 

Bolt 13FA3331 104 

Unit: meter 



Test Equipment 

 Agilent 33250A (For function generator based test) 

 Amplifier (California AP2000 2000W) 

 Power Supply (MPJA 14604PS) 

 NI-PXI 8105 Controller 

 NI-PXI 6733 (For NI analog out signal generator based test) 

 68-Pin Connector Block (SCB68) 

 ICP type Dytran triaxial accelerometer (3093B1) 

 One-channel AnyLogger (Korea Maintenance Co., LTD): AnyLoggerS-
V/ICP. 

 NI-LabVIEW 8.6 



Amplifier(California AP2000 2000W) 

Specification 
 320 watts RMS x 2 at 4 ohms 

 480 watts RMS x 2 at 2 ohms 

 960 watts RMS x 1 bridged output at 4 ohms 

 4-ohm stable in bridged mode 

 Stereo or bridged mono output 

 Tri-way capable (Tri-Way Crossover required) 

 Dual power supply for stability at high volumes 

 Fuse rating: 25A x 4 

 Requires 4-gauge power and ground leads and a 
100-amp fuse 

 Wiring and hardware not included with amplifier 

 Variable low-pass filters (50-250 Hz, 12 
dB/octave) 

 Variable bass boost (0-12 dB) at 45 Hz 

 Variable subsonic filter (20-50 Hz) 

 Preamp-level inputs (speaker-level to preamp-
level adapter included) 

 Preamp outputs 

 Wired bass level remote control 

 24-1/4"W x 2"H x 10-1/4"D 



Power Supply(MPJA 14604PS) 

Specification 
 Input voltage : 110-127 AC 

 Output voltage : 0-30 DC  

 Current : 0-10 A 

 Voltage regulation  

 CV 1X10-4+3mV  

 CC 2X10-3+6mA  

 Load regulation 

 CV 5X10-4+3mV  

 CC 5X10-4+6mA  

 Ripple & node 

 CV<1.5mVrms 

 CC <10mArms 

 Protection : current limiting 

 Voltage indication accuracy : 1%+1d 

 Current indication accuracy : 1%+1d 

 Ambient temperature : 0 ~40C 

 Humidity: <90% 



NI-PXI 8105 Controller 

 Intel Core Duo Processor T2500(2.0 GHz dual 
core)   

 512 MB (1 x 512 MB DIMM) dual channel 667 
MHz DDR2 RAM standard,4 GB (2 x 2 GB DIMMs) 
maximum   

 Integrated I/O  
 10/100/1000BASE-TX Ethernet  

 4 Hi-Speed USB ports  

 ExpressCard/34 slot  

 DVI-I video connector  

 GPIB (IEEE 488) controller  

 RS232 serial port   

 IEEE 1284 ECP/EPP parallel port   

 Integrated hard drive  

 Internal PXI trigger bus routing   

 Watchdog timer Software   

 Hard drive-based recovery image PXI System  

Specification 



PXI 6733 High-Speed Analog Output 

 8 high-speed digital I/O lines; two 24-bit counters; 
digital triggering 

 Onbard or external update clock PXI trigger bus for 
synchronization with DAQ motion, and vision 
products 

 NI DAQmx driver with configuration utility to simplify 
configuration and measurement 

 Superior integration: LabVIEW, LabVIEW Real-Time, 
LabWindows ™/CVI, and Measurement Studio for VB  

 1MS/s, 16-Bit, 8 Channels 

Specification 



68-Pin Connector Block (SCB68) 

Specification 

 Number of channels : 8 differential, 16 single-ended 

 Accuracy  : ±1.0° C over a 0° to 110° C range 

 Output : 10 mV/°C 

 I/O connectors One 68-pin male SCSI connector 

 Temperature : 0° to 70° C 

 Relative humidity : 5% to 90% non-condensing 

 Temperature : -55° to 125° C 

 Relative humidity : 5% to 90% non-condensing 



Dytran Accelerometer (3093B1) 

Model 3093B1 Dytran Triaxial Accelerometer 

Specification Value Uint 

Weight 13.5 Grams 

Size(Height x Width x Depth) 0.54 x0.59 x 0.59 Inch 

Sensitivity 100 mV/G 

Ranges +/-50 G 

Frequency Response 2 to 5000 Hz 

Equivalent Electrical Noise 0.007 G, RMS 

Linearity 1 % F.S. 

Temp. Range -60 ~ +250 °F 

Supply Current Range each axis 2 to 20 mA 

Supply Voltage Range each axis +18 to +30 VDC 

Output impedance 100 OHMS 



AnyLogger 

AnyloggerS-V/ICP for acceleration transmitter 
AnyLoggerS-B for strain transmitter 

 



AnyLogger 

Contents AnyloggerS-V/ICP AnyLoggerS-B 

Support Num. of Channel 1 1 

Input Voltage Range -5 ~ 5V 0 ~ 3V 

Gain 1,2,5,10,20,50,100 50,100,250,500,1000,2500,5000 

Programmable 10~1000Hz (10,20,50,100,200,500,1000) 10 ~ 1000Hz 

Lower Pass Filter   10,20,50,100,200,500,1000 

Prog. Offset 0 ~ 5V(12Bit) 0 ~ 3.3V(12Bit) 
Max Sampling Rate 1000Hz 1000Hz 

Exciting Voltage 24V(Only ICP Type) 3.3V±0.5% 

Connector BNC Connector 4Pin Circular Connector 

SIM Usage No Yes 
Power Consumption 

(w/o sensor) 
150mA 100mA(w/o SIM) 

Internal Battery Li-ion Rechargable 1500mAh x 2EA(Serial) Li-ion Rechargable1500mAh x 2EA(Serial) 

Ext. Power Requirement 5V 5V 

Operation Temperature -10 ~ 80℃ -10 ~ 80℃ 

Sync. Accuracy < 10ms < 10ms 

Dimension 800 x 973 x 353 800 x 883 x 353 
Weight 210g 210g 

ADC Resolution Differential 16Bit Differential 16Bit 

Measurement Accuracy F.S. 0.1% F.S. 0.1% 

Sensor Connectibility Voltage or ICP source Bridge type sensor 

Signal Ripple Depends on Gain Depends on Gain 

Communication Bluetooth v1.2 class1 18dBm(w/o ant.)  Bluetooth v1.2 class1 18dBm(w/o ant.)  

Radio Frequency Range 2.402 ~ 2.480GHz 2.402 ~ 2.480GHz 

Transmission Method FHSS(freq. Hopping Spread Spectrum) FHSS 

Modulation Method GFSK(Gaussian-filtered Freq. Shift Keying) GFSK 

Approvals MIC, FCC, CE MIC, FCC, CE 

Specification 



NI-LabVIEW 8.6  

 LabVIEW (Laboratory Virtual Instrument Engineering Workbench) 

is a graphical programming language that uses icons instead of lines 
of text to create applications. 

 
 In contrast to text-based programming languages, where 
instructions determine the order of program execution, LabVIEW 
uses dataflow programming, where the flow of data through the 
nodes on the block diagram determines the execution order of the 
VIs and functions. VIs, or virtual instrument, are LabVIEW programs 
that imitate physical instruments.  

VI Block Diagram Front Panel 



   Users Manual of NI-LabVIEW VI 
Program 



1) Set Parameter – to “Monitoring 
Start” and click “Set” 

2) Set Path – Create an empty file in  
“Path” where the original raw Acc. 
data will be saved 

3) Select Mode “RAW DATA SAVE 
MODE” – Save the original raw 
data to the file 

4) Sampling Rate – Default 1KHz 

5) Run- Run the front panel while the 
structure is vibrating 

6) Stop – After more than specified 
times (# of samples*/ Samp. Rate), 
click “Stop”. Users can control the 
monitoring time. 

 

*Note: Users should get enough # of 
samples for subsequent signal 
analyses. 

 

Users Manual of LabVIEW VI Prog. (1) 
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Users Manual of LabVIEW VI Prog. (2) 

After getting raw data, users can run 
eight kinds of signal processing analyses 
using this front panel. 

At first “FFT analysis” is carried out . 

 

7) Select Mode – Select  “ANALYSIS 
MODE”  

8) Select Analysis Type – Select FFT 
analysis 

9) Set path – Create empty files in the 
folder where the acceleration data, 
graph1 data and graph2 data will be 
saved. Users can use file extensions 
such as *.txt, *.dat or *.lvm 

10) Unit and Operation table- Check 
the table to find out the parameter 
needed for analysis and the unit of 
the results. 

11) # of sample –Enter the number of 
samples for analysis 

Note - Number of samples should be 
less than the number of original raw 
data which was acquired by the 
user at the “RAW DATA SAVE 
MODE” 

12) Set FFT size* default is -1 which 
means it uses all the samples in 
x(t). See explanations from NI. 

13) Run 
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* FFT size is the length of the FFT you want to perform. If FFT size is greater than the number of elements in X,  
this VI adds zeros to the end of X to match the size of FFT size. If FFT size is less than the number of elements in X,  
this VI uses only the first n elements in X to perform the FFT, where n is FFT size. If FFT size is less than or equal to 
0,  this VI uses the length of X as the FFT size.  



Users Manual of LabVIEW VI Prog. (3) 

Results of FFT Analysis 



As an additional analysis example,  “FFT 
Spectrum(Real-Imag) analysis” is carried 
out . User can run the other analysis 
continuously based on the same original 
raw data 

 

14) Select Analysis Type  

       Select FFT Spectrum(Real-Imag)  

15) Unit and Operation table- Check 
the table to find out the parameter 
required for analysis and the unit of 
the results 

16) # of sample –Enter the number of 
samples for analysis 

Note - Number of samples should be 
less than the number of original raw 
data which was acquired by the 
user at the “RAW DATA SAVE 
MODE” 

17) Window–Select the type of window 

18) Set path – Create different name of 
empty files in the folder where the 
graph1 data and graph2 data will be 
saved. Users can use those file 
extensions such as *.txt, *.dat or 
*.lvm 

19) Run 

 

Users Manual of LabVIEW VI Prog. (4) 
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Users Manual of LabVIEW VI Prog. (5) 

Results of FFT Spectrum(Real-Imag) Analysis 



Users Manual of LabVIEW VI Prog. (6) 

 Stack Sequence and Case Structure were used 

 The first sequence, program saves the raw data at the given path 

 Users should define correct IP address and port number based on the equipments 
following the ANYLOGGER ® manual. 

First Stack of Block Diagram of VI Program 

Set IP address and Port number 



 In the second frame, users need to set the sensitivity of sensor. 

 All eight stack sequences were implemented corresponding to the analysis types. 

Users Manual of LabVIEW VI Prog. (7) 

Sensitivity of accelerometer (V/g) 

Second Stack of Block Diagram of VI Program 

Power Spectrm.VI 

FFT.VI 

Auto Power Spectrum.VI Amplitude and Phase Spectrum.VI 

FFT Power Spectrum.VI 

FTT Power Spectral Density.VI 

FFT Spectrum(Mag-Phase).Vi 

Eight Stack Sequences  

FFT Spectrum(Real -Imag).VI 



Users Manual of LabVIEW VI Prog. (8) 

 For better understanding of digital signal processing, a 
NI-LabVIEW VI program is provided to process  
simulated sinusoidal signals.  



Users Manual of LabVIEW VI Prog. (9) 
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1) Sine Signal Generator – set 
frequency, amplitude and sampling 
rate to generate sine waves 

2) Select Analysis Type  – Users can 
select one of the eight analysis 
types. Set “FFT Spectral(Mag-
Phase) 

3) Unit and Operation table –Check 
the table to find out the parameter 
needed for analysis (# of samples 
and window)  and the unit of the 
output graphs  

4) Set # of samples – Based on the 
number of samples, the program 
generate sine wave and do 
analysis(for example 1000) 

5) Set window Set the window as 
Hanning   

6) Set path – Create empty files in the 
folder where the acceleration data, 
graph1 data and graph2 data will be 
saved and set path. User can use 
those file extensions such as *.txt, 
*.dat or *.lvm 

7) Run 
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Users Manual of LabVIEW VI Prog. (10) 

Results of FFT Spectrum (Mag-Phase) 



As an additional analysis example,  
“Amplitude and Phase Spectrum 
analysis” is carried out . Users can run 
the other analysis continuously based on 
the sine wave which is generated by the 
user 

 

8) Select Analysis Type  

       Select Amp. and Phase Spectrum  

9) Unit and Operation table- Check 
the table to find out the parameter 
needed for analysis and the unit of 
the results 

10) # of sample –Based on the 
number of samples, the program 
generate sine wave and do 
analysis(for example 5000) 

Note – Users can change other 
parameter but there will be no 
effect for analysis such as FFT size 
or window 

11) dt – Input the dt (1/sampling rate) 

12) Set path – Create different name of 
empty files in the folder where the 
graph1 data and graph2 data will be 
saved and set path. User can use 
those file extensions such as *.txt, 
*.dat or *.lvm 

13) Run 

 

Users Manual of LabVIEW VI Prog. (11) 
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Users Manual of LabVIEW VI Prog. (12) 

Results of Amp. and Phase Spectrum 



 Sine Wave.VI was used for generate sine wave 

 All eight stack sequences were implemented corresponding to the analysis types. 

Users Manual of LabVIEW VI Prog. (13) 

Block Diagram of VI Program 

Power Spectrm.VI 

FFT 

Auto Power Spectrum.VI Amplitude and Phase Spectrum.VI 

FFT Power Spectrum.VI 

FTT Power Spectral Density.VI 

FFT Spectrum(Mag-Phase).Vi 

Eight Stack Sequences  

FFT Spectrum(Real -Imag).VI 

Sine Wave.VI 
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