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Learning Objectives 

 Objective 1: Determine modal properties of the MDOF system. 

 

 Objective 2: Determine dynamic response of MDOF system using the 
mode superposition. 

 

 Objective 3: Experimentally determine modal properties from 
frequency response function (FRF). 

 



Vibration of Undamped 2 DOF 
System 



Undamped 2DOF System 

 For an undamped 2 DOF system, the equation of motion takes a form 

 

 

 

 Assuming the harmonic response, 

 

 

 

 

 

 

 To have a non-trivial solution 
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Undamped 2DOF System 

 Solve for the roots 

 

 

 

 

 Substituting ω= ω1 to either of the equations (1) and obtaining the 
ratio    

 

 

 

 Substituting ω= ω2 to either of the equations (1) and obtaining the 
ratio    

 

 

 

 Then the mode shapes are found as 
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Undamped 2DOF System 

 Then, the general solution for the response is a linear combination of 
these two and can be written as 

 

 

 

 

 A1, A2, 1 and 2 are determined from initial conditions. 
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Example I (1) 

 Compute the natural frequencies and mode shapes of the 2-DOF 
system 
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Example I (2) 

 Substituting ω1 into ([k]- ωi
2[m]){u}=0 

 

 

 

 

 

 

 

 Substituting ω2 into ([k]- ωi
2[m]){u}=0 
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Example I (3) 

 Visualizing the mode shape 
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Example II (1) 

 Consider a system that is under free vibration with a rigid-body mode 

 

 

 

 

 

 

 

 

 Assuming the harmonic response 

 

 

 

 The characteristic equation is  
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Example II (2) 

 

 

 

 

 

 Substituting ω1 into ([k]- ωi
2[m]){U}=0 

 

 

 

 Substituting ω2 into ([k]- ωi
2[m]){U}=0 
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Example II (3) 

 Visualizing the mode shapes, 

 

 

 

 

 

 

 

 Zero eigenvalue means rigid body motion and the stiffness matrix is 
singular. |k|=0 
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Introduction to Mode Superposition 
with 2 DOF System 



Introduction to Mode Superposition 

 Let’s consider two masses connected with springs. The equation of 
motion is as follows 
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Introduction to Mode Superposition 

 Let’s define a set of principal coordinates, η1(t) and η2(t). 

 

 Then, by the mode superposition, the displacement response can be 
written as 

 

 

 

 

 

 

 Note that 
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Introduction to Mode Superposition 

 Pre-multiplying ΦT to the equation of motion, 
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Introduction to Mode Superposition 

 

 

 

 

 

 

 

 

 

 Assuming harmonic motion and solving the decoupled equations of 
motion, 

 

 

 

 

 Substituting these into the decoupled equations of motion 
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Introduction to Mode Superposition 

 

 

 Recalling 

 

 

 

 

 

 

 

 

 That is, 
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Introduction to Mode Superposition 

 Visualizing the response under harmonic excitation, 
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  Vibration Properties of MDOF 
Systems: Modes and Frequencies 



Vibration Properties of MDOF System 

 Eigensolution 

 

 

 

 

 

 

 

 Solve for ω 

 

 

 Scaling (normalizing) the modes 

 Scale the r-th mode so that               at a specified coordinate 

 Scale the r-th mode so that              where  
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Vibration Properties of MDOF System 

 

 

 

 

 

 Mode shapes for distinct frequency cases 

 Let’s define the dynamic stiffness as 

 

 

 If the coordinate 1 is not a node point of the r-th mode 
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Vibration Properties of MDOF System 

 Orthogonality 

 For the r-th mode, pre-multiplying  

 

 

 For the s-th mode, pre-multiplying  

 

 

 

 

 

 Subtracting equation (3) from equation (2) 
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Vibration Properties of MDOF System 

 From Equation (2), 

 

 

 

 For N-DOF system, the modal matrix is written as 

 

 

 

 Then, algebraic equation can be written for all N modes 
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Vibration Properties of MDOF System 

 If the natural modes are normalized so that Mr=1, r=1,2,…,N, then 

 

 

 

 Mode shapes for repeated frequency cases 

 

 

 If the eigenvalues are repeated p times, then there could be (N-p) 
linearly dependent eigenvectors at least. 

 For example, if     and      are eigenvectors corresponding to the 
repeated eigenvalues,  they do not need to be orthogonal to each 
other.  But they can be determined so that they are orthogonal to 
each other and the following always is satisfied.   

 

 

 So for this case, at least      is the only one 

 that is linearly independent. 
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Vibration Properties of MDOF System 

 The rank of D(ωr) will be N-p if ωr is repeated p times   
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Vibration Properties of MDOF System 

 Determine p vectors so that                                  are orthogonal to 
each other 
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Exam III (1) 

 Consider the following assembly of masses and springs (numbers are 
mass and stiffness values) 

 

 

 

 

 

 

 

 Then the equation of motion is as follows 

 

 

 

 

 The dynamic matrix is obtained as 
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Exam III (2) 

 

 

 

 

 For 
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Exam III (3) 

 Letting  

 

 

 

 

 So the two modes corresponding to the repeated natural frequencies 

 

 

 

 

 For  
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Exam III (4) 

 

 

 

 

 

 

 

 

 

 

 Checking the mass-orthogonality of  
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Exam III (5) 

 Mass normalization 
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Exam III (6) 

 Divide each       by the square root of the modal mass  i
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 Frequency-Response Analysis of 
MDOF System 



Frequency Response Analysis 

 Consider N-DOF system with viscous damping 

 

 

 Then uncoupled modal equation of motion is as follows 

 

 

 

 

 

 

 Using the complex frequency response technique, 
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Frequency Response Analysis 
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Frequency Response Analysis 

 Then the real part of  

 

 

 

 

 

 

 Then the complex FRF in physical coordinates  
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Frequency Response Analysis 

 Steady-state response       is obtained 

 

 

 

 

 From the complex frequency response function,  the Nyquist plot can 
be plotted  
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Frequency Response Analysis 

 The complete FRF will give the physical response of each coordinate 
to each input 
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 Experimental Modal Testing 



Experimental Modal Testing 

 Excitation Methods 

 Based on wave forms 

 Transient signals 

 Random signals (white random, Pink random, Burst random) 

 Periodic signals (sweep sine, pseudo-random, periodic chirp) 

 Based on testing types 

 Step-relaxation 

 Impulse testing 

 Shaker testing 

 Test under operation 

 Characteristics of excitation methods 

 Impulse testing 

 Using an impact hammer, it excites the structure.  The ratio 
of Peak to RMS value is large. Thus, it is very likely to excite 
nonlinearity that the system has. 

 

 



Experimental Modal Testing 

 

 

 

 

 

 

 

 

 

 

 Fast sine sweep testing 

 Periodic chirp sweep frequency ranges multiple times. But 

 But chirp signals do not repeat the sweep.  Relatively, it 
needs less number of ensemble averaging. 

 By narrowing the frequency range, it allows to observe the 
effect of nonlinearity. 

Hammer 

Hammer moves 
Accelerometer is stationary 

Force transducer 

Different tips for different frequency range 

rubber 

Plastic or metal 
FFT of  
impact 



Experimental Modal Testing 

 Step-relaxation testing 

 It can be used for large structural systems. 

 Energy in low frequency is large. 

 

 

 

 

 

 Pure random 

 Per each sampling, the measured signals are different. So it 
is suitable to remove the effect of nonlinearity, noise and 
measurement errors by taking a sufficient number of 
ensemble averaging. 

Pull a known distance and release 



Experimental Modal Testing 

 Pseudo random 

 Signals are generated in the frequency domain and converted 
to time domain signals.  So, per each sampling cycle, the 
signal has periodicity. Unlike the pure random, the leakage is 
not a practical problem. Relatively, it needs a small number 
of ensemble averaging. 

 

 Shaker testing 

Shaker is stationary 
Accelerometers move 

Shaker 

Force 
transducer 



Experimental Modal Testing 

 Methods of Supporting Structures: Depending on the supporting 
method, quality of test results is determined since supporting 
methods change the boundary conditions and lead to dynamic 
properties of the structures. 

 Free-free supports 

 Under free-free supporting conditions, rigid body modes can 
also be detected.  Under ideal free-free supporting 
conditions, the rigid body mode has 0 Hz.  If stiff elastic 
supporting materials are used, the natural frequency of the 
rigid body mode increases and affects the vibrational modes 
in a negative way. Therefore, it is important to use soft 
elastic materials (for example, long elastic wires) 

Excitation 

l

EA
k 

Excitation 

Support structure in 90° 
to the excitation. 



Experimental Modal Testing 

 Since large displacement due to rigid body motions can 
occur, non-contact sensors (i.e. laser vibrometer) may not be 
suitable for free-free supporting method. 

 

 Ground supports 

 It requires times and efforts. 

 Since the support should not move, the supporting part has 
to be stiff and massive. 

 External excitation force could not be measured. Therefore, it 
could be a source of errors. 

 

 



Experimental Modal Testing 

 Mathematical difference between impact and shaker test 
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Experimental Modal Testing 

 Assumptions in experimental modal testing 

 Structures are linear elastic 

 Structures can be modeled as a finite DOF 

 Structures are viscously damped 

 

 

 Recalling the mode superposition representation of the frequency 
response function, the steady-state response u(t) is as follows 
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Experimental Modal Testing 

 

1 2 3 

1
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1st mode 

2nd mode 

3rd mode 

Receptance FRF magnitude 
Plots for an idealized 3DOF 
system 

Called node point of mode 2 



Experimental Modal Testing 

Measurement of a column of the 
FRF matrix 
Single-input-multiple-output (SIMO) 
test 

Measurement of a row of the 
FRF matrix 
Multiple-input-single-output (MISO)  
test 



Experimental Modal Testing 

 Frequency response function for SDOF system 

 Receptance FRF 

 

 

 

 Mobility FRF 

 

 

 

 Accelerance FRF 

 

 

 

 

 Note that the FRFs are complex. 
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Experimental Modal Testing 

 Expressing FRFs in partial-fraction format (i.e. pole-residue format) 

 

 

 

 Where A and A* are complex conjugate residues 

 

 

 A and A* are pure imaginary quantities 

 

 

 

 Frequency Response Functions for MDOF system 
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Experimental Modal Testing 

 

 

 

 

 

 

 Transforming the receptance FRF to the partial fraction form 

 

 

 

 where Aijr and Aijr* are complex conjugate modal residues 

 

 

 

 However, in testing we don’t know Mn. 
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Experimental Modal Testing 

 Therefore, 

 

 

 

 

 Qn are determined by curve-fitting to the measured FRF. 
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Quadrature Peak-Picking Method 

 When the natural frequencies are widely separated and the forcing 
frequency is equal to one of the undamped natural frequencies, 
Ω=Ωn., the FRFs are dominated by the corresponding n-th mode. 

 

 

 

 

 From this equation, when  

 

 

 

 Therefore, mode shape n can be obtained by examining the 
imaginary part of the FRFs for any output measurement point i for 
which           , while the structure is subjected to harmonic excitation 
at force frequency  Ω=Ωn at each DOF j.   Thus, a row of the FRF 
matrix should be inspected. 
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Quadrature Peak-Picking Method 

 Or, mode shape n can also be obtained by examining the imaginary 
part of the FRFs for each output measurement point I while the 
structure is subjected to harmonic excitation at force frequency  
Ω=Ωn at any DOF j for which         . Thus, a row of the FRF matrix 
should be inspected. 

0jn



Example IV 

 Use the equation (4) to estimate the fundamental mode shape of the 
4-DOF beam whose accelerance FRFs are shown as below. 

 

 The first peak occur at 35 Hz. 

 

 

 

 

 

 

 After normalizing, 

 

 

 the first mode shape is obtained. 

 84.49.168.328.491 

 10.034.066.00.11 



 Hands-on Experiment Project 



Problem Statement (1) 

 Conduct a fast sweep sine test using a beam structure and 
measure dynamic response and input excitation signals. 

 

 Determine natural frequencies and mode shapes from the 
measured FRFs  by the provided NI-LabVIEW VI program. 

 

 The tested beam is a fixed-fixed carbon steel beam. 

 

 



Guides for Reports 

 Write a full report using the instructions provided in class. Organize your 
report into sections (e.g. Introduction, Procedures, Results, Discussion, 
Summary, References). Write concisely and clearly. 

 

 Include the following: (1) A schematic diagram and description of the test 
equipment. (2) Plots of the time-domain vibration response data 
measured from the experiment. (3) Plots of magnitudes, imaginary, real 
parts of the FRFs, and phase angles. (4) Plots of Nyquist and coherence. 
(5) Plot of mode shapes determined by the quadrature peak-picking 
method. 



 Test Setup and Equipment 



Test Setup and Procedures (1) 

6 AnyLoggerS-V/ICP 

NI-PXI 8105 in NI-PXI 1042  
NI- LabVIEW VI Program MSP-100 

Switch box 

Connector Block (SCB68) 

NI PXI 6733 

Power Supplier(MPJA 14604PS) 

Amplifier(AP2000) 



Test Setup and Procedures (2) 

 Step1 Turn on power supply. 

 Step2 Generate excitation signals using NI-LabVIEW and send 
them through analog output board (NI-PXI 6733). 

 Step3 Under the vibration excitation, proceed the test. 



Test Structure- Drawing 

Part  Faztek Part # EA 

Part A 15QE3030L (0.3m) 4 

Part B 15EX1530L-12(1.22m) 2 

Part C 15CB4805 12 

Part D 15CB4000 4 

Part E Test specimen   

Nut 15FA3501 104 

Bolt 13FA3331 104 

Unit: meter 

10-32 UNF-2A 



Test Equipment 

 

 Agilent 33250A (For function generator based test) 

 Amplifier (California AP2000 2000W) 

 Power Supply (MPJA 14604PS) 

 NI-PXI 8105 Controller 

 NI-PXI 6733 (For NI analog out signal generator based test) 

 68-Pin Connector Block (SCB68) 

 ICP type Dytran triaxial accelerometer (3093B1) 

 ICP type PCB force sensor (208C02) 

 Six-channel AnyLogger (Korea Maintenance Co., LTD): AnyLoggerS-
V/ICP and two MSP-100 modules 

 NI-LabVIEW 8.6 



Amplifier(California AP2000 2000W) 

Specification 
 320 watts RMS x 2 at 4 ohms 

 480 watts RMS x 2 at 2 ohms 

 960 watts RMS x 1 bridged output at 4 ohms 

 4-ohm stable in bridged mode 

 Stereo or bridged mono output 

 Tri-way capable (Tri-Way Crossover required) 

 Dual power supply for stability at high volumes 

 Fuse rating: 25A x 4 

 Requires 4-gauge power and ground leads and a 
100-amp fuse 

 Wiring and hardware not included with amplifier 

 Variable low-pass filters (50-250 Hz, 12 
dB/octave) 

 Variable bass boost (0-12 dB) at 45 Hz 

 Variable subsonic filter (20-50 Hz) 

 Preamp-level inputs (speaker-level to preamp-
level adapter included) 

 Preamp outputs 

 Wired bass level remote control 

 24-1/4"W x 2"H x 10-1/4"D 



Power Supply(MPJA 14604PS) 

Specification 
 Input voltage : 110-127 AC 

 Output voltage : 0-30 DC  

 Current : 0-10 A 

 Voltage regulation  

 CV 1X10-4+3mV  

 CC 2X10-3+6mA  

 Load regulation 

 CV 5X10-4+3mV  

 CC 5X10-4+6mA  

 Ripple & node 

 CV<1.5mVrms 

 CC <10mArms 

 Protection : current limiting 

 Voltage indication accuracy : 1%+1d 

 Current indication accuracy : 1%+1d 

 Ambient temperature : 0 ~40C 

 Humidity: <90% 



NI-PXI 8105 Controller 

 Intel Core Duo Processor T2500(2.0 GHz dual 
core)   

 512 MB (1 x 512 MB DIMM) dual channel 667 
MHz DDR2 RAM standard,4 GB (2 x 2 GB DIMMs) 
maximum   

 Integrated I/O  
 10/100/1000BASE-TX Ethernet  

 4 Hi-Speed USB ports  

 ExpressCard/34 slot  

 DVI-I video connector  

 GPIB (IEEE 488) controller  

 RS232 serial port   

 IEEE 1284 ECP/EPP parallel port   

 Integrated hard drive  

 Internal PXI trigger bus routing   

 Watchdog timer Software   

 Hard drive-based recovery image PXI System  

Specification 



PXI 6733 High-Speed Analog Output 

 8 high-speed digital I/O lines; two 24-bit counters; 
digital triggering 

 Onbard or external update clock PXI trigger bus for 
synchronization with DAQ motion, and vision 
products 

 NI DAQmx driver with configuration utility to simplify 
configuration and measurement 

 Superior integration:LabVIEW, LabVIEW Real-Time, 
LabWindows ™/CVI, and Measurement Studio for VB  

 1MS/s, 16-Bit, 8 Channels 

Specification 



68-Pin Connector Block (SCB68) 

Specification 

 Number of channels : 8 differential, 16 single-ended 

 Accuracy  : ±1.0° C over a 0° to 110° C range 

 Output : 10 mV/°C 

 I/O connectors One 68-pin male SCSI connector 

 Temperature : 0° to 70° C 

 Relative humidity : 5% to 90% non-condensing 

 Temperature : -55° to 125° C 

 Relative humidity : 5% to 90% non-condensing 



Dytran Accelerometer (3093B1) 

Model 3093B1 Dytran Triaxial Accelerometer 

Specification Value Uint 

Weight 13.5 Grams 

Size(Height x Width x Depth) 0.54 x0.59 x 0.59 Inch 

Sensitivity 100 mV/G 

Ranges +/-50 G 

Frequency Response 2 to 5000 Hz 

Equivalent Electrical Noise 0.007 G, RMS 

Linearity 1 % F.S. 

Temp. Range -60 ~ +250 °F 

Supply Current Range each axis 2 to 20 mA 

Supply Voltage Range each axis +18 to +30 VDC 

Output impedance 100 OHMS 



Specification of Force Sensor  

Specification Value Uint  

Weight 22.7 Grams 

Size(Hex x Height x Sensing Surface)  15.88 x15.88 x 15.7 mm 

Sensitivity 11241 mV/kN 

Ranges ±0.4448 kN 

Linearity  Below 1 % F.S.  

Temp. Range  -54 to +121 °C  

Supply Current Range each axis  2 to 20  mA  

Supply Voltage Range each axis  30 VDC  

Output impedance  Below 100 OHMS  

Force Sensor (PCB 208C02)  



AnyLogger 

AnyloggerS-V/ICP for acceleration transmitter 
AnyLoggerS-B for strain transmitter 

 



AnyLogger 

Contents AnyloggerS-V/ICP AnyLoggerS-B 

Support Num. of Channel 1 1 

Input Voltage Range -5 ~ 5V 0 ~ 3V 

Gain 1,2,5,10,20,50,100 50,100,250,500,1000,2500,5000 

Programmable 10~1000Hz (10,20,50,100,200,500,1000) 10 ~ 1000Hz 

Lower Pass Filter   10,20,50,100,200,500,1000 

Prog. Offset 0 ~ 5V(12Bit) 0 ~ 3.3V(12Bit) 
Max Sampling Rate 1000Hz 1000Hz 

Exciting Voltage 24V(Only ICP Type) 3.3V±0.5% 

Connector BNC Connector 4Pin Circular Connector 

SIM Usage No Yes 
Power Consumption 

(w/o sensor) 
150mA 100mA(w/o SIM) 

Internal Battery Li-ion Rechargable 1500mAh x 2EA(Serial) Li-ion Rechargable1500mAh x 2EA(Serial) 

Ext. Power Requirement 5V 5V 

Operation Temperature -10 ~ 80℃ -10 ~ 80℃ 

Sync. Accuracy < 10ms < 10ms 

Dimension 800 x 973 x 353 800 x 883 x 353 
Weight 210g 210g 

ADC Resolution Differential 16Bit Differential 16Bit 

Measurement Accuracy F.S. 0.1% F.S. 0.1% 

Sensor Connectibility Voltage or ICP source Bridge type sensor 

Signal Ripple Depends on Gain Depends on Gain 

Communication Bluetooth v1.2 class1 18dBm(w/o ant.)  Bluetooth v1.2 class1 18dBm(w/o ant.)  

Radio Frequency Range 2.402 ~ 2.480GHz 2.402 ~ 2.480GHz 

Transmission Method FHSS(freq. Hopping Spread Spectrum) FHSS 

Modulation Method GFSK(Gaussian-filtered Freq. Shift Keying) GFSK 

Approvals MIC, FCC, CE MIC, FCC, CE 

Specification 



NI-LabVIEW 8.6  

 LabVIEW (Laboratory Virtual Instrument Engineering Workbench) 

is a graphical programming language that uses icons instead of lines 
of text to create applications. 

 
 In contrast to text-based programming languages, where 
instructions determine the order of program execution, LabVIEW 
uses dataflow programming, where the flow of data through the 
nodes on the block diagram determines the execution order of the 
VIs and functions. VIs, or virtual instrument, are LabVIEW programs 
that imitate physical instruments.  

VI Block Diagram Front Panel 



   Users Manual of NI-LabVIEW VI 
Program 



Modal Analyis PART1.VI measures raw 
data and converts raw data to physical 
input forces and output accelerations 
and save. 

 

1) Set Parameter – to “Monitoring 
Start” and click “Set”. 

2) Set Sampling Rate – Default 1KHz 
for both input and output. 

3) Set Path – Create empty files in  
“Path” where the raw data of input 
and outputs will be saved. One 
input and five outputs were used in 
this test. 

4) Set Path – Create empty files in  
“Path” where the physical input 
force and output acc. data will be 
saved. Five outputs will be saved in 
one file. 

5) Run- Run the front panel while the 
structure is vibrating. 

6) Stop –Users can control the amount 
of data by running time. 

 

Users Manual of LabVIEW VI Prog. (1) 

2 

3 

4 

5 

1 
6 

Modal Analysis PART 1.VI 



Users Manual of LabVIEW VI Prog. (2)  

After acquiring raw data, the VI program 
automatically converts raw data to 
physical input forces and output 
accelerations and save them. 

 

One input data are saved to the path of 
input and five output data are save to 
the path of output. 

PART 1.VI 



Users Manual of LabVIEW VI Prog. (3) 

PART 1.VI 

 Two-stack sequences were used for Part1.VI. 

 At the first sequence, the program saves the raw data to the file in the given path. 

 Users should define correct IP address and port number based on the equipment 
following the AnyLogger® manual. 

The First Stack of Block Diagram of PART1.VI 

Set IP addresses and port numbers 



Users Manual of LabVIEW VI Prog. (4) 

PART 1.VI 

 At the second sequence, the program reads the raw data from the files in the 
given paths and converts to physical input force and output acceleration data 
and save as data file. 

 

The Second Stack of Block Diagram of PART1.VI 



Users Manual of LabVIEW VI Prog. (5) 

PART 2.VI 

Part2.VI has two analysis modes (see 
ANALYSIS TYPE on the panel). The first 
mode is FRF, and the second mode is 
MODE SHAPE. In the FRF mode, the VI 
program computes FRFs based on input 
and output signals. 

 

1) Set Analysis Type– to “FRF” 

2) Set Path – Set files which stored the 
physical input and output data in  
“Path” . 

3) Average Parameter– Users can set 
the Average Mode, the Number of 
Average,  Weighting Mode, and 
Linear Mode. 

4) FRF Parameter– Users can set the 
Window, Block Size, Sampling Rate 
and FRF Mode. 

5) Restart– Restarting average. Skip if 
it is the first run.  

6) Run 
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3 4 
5 
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Users Manual of LabVIEW VI Prog. (5) 

PART 2.VI 
After the first run, panel shows input and 
output signals and their FRF plots in the 
plot changer.  

 

• a is a plot of input force data 

• b are plots of output accelerations. 

• c is a plot of imaginary part of FRF 
computed from input and output  

 

By selecting different tabs, users can see 
other FRF graphs. 

 

 

b 
a 

Tabs for  
selecting 
input 

c 



Users Manual of LabVIEW VI Prog. (6) 

FRF Parameters 

 averaging mode specifies the averaging mode. 

0  No averaging (default) 

1  Vector averaging 

2  RMS averaging 

0  Linear 

1  Exponential (default) 

 weighting mode specifies the weighting mode for RMS and vector averaging. 

 number of averages specifies the number of averages used for RMS and vector 
averaging.  
 If weighting mode is exponential, the averaging process is continuous.  
 If weighting mode is linear, the averaging process stops after this VI computes the 
selected number of averages. 

 
 linear mode specifies the behavior of the averaging if you set the value of 
the weighting mode parameter to Linear. If you set weighting 
mode to Exponential, linear mode is ignored.  

 

0 
 One shot—(default) Specifies that the averaging process stops once the value of number of   
averages is reached. 

1 
 Auto restart—Specifies that the averaging process automatically restarts after the value of number of 
averages is reached. 



Users Manual of LabVIEW VI Prog.(7) 

FRF Parameters 

0  Rectangle 

1  Hanning (default) 

2  Hamming 

3  Blackman-Harris 

4  Exact Blackman 

5  Blackman 

6  Flat Top 

7  Four Term Blackman-Harris 

8  Seven Term Blackman-Harris 

9  Low Sidelobe 

11  Blackman Nutall 

30  Triangle 

60  Kaiser 

61  Dolph-Chebyshev 

62  Gaussian 

 window specifies the time-domain window to use. The default is Hanning. 

 block size specifies the number of data contained in each block. 
 

 FRF mode specifies how to compute the frequency response function (FRF). FRF 
mode determines whether H1, H2, or H3 is computed when performing frequency response 
measurements. The default is H1. 

* Note  FRF mode only applies to RMS or vector averaging. FRF mode changes the result in 
RMS averaging but not in vector averaging. In vector averaging, H1 = H2 = H3. 

0   H1 (default) 

1   H2 

2   H3 



Users Manual of LabVIEW VI Prog.(8) 

FRF Parameters 

 sampling rate specifies the sampling rate of original input and output signal.  For the FRF the 
sampling rate of input and output signal should be same. 

 

 # of block specifies the number of blocks based on original signal and block size. The number of 
block is equivalent to the maximum number of average. 

 

 resolution specifies the frequency resolution of FRF graph. 

 

 averages completed returns the number of averages completed by the VI at that time. 

 

 averaging done returns TRUE when averages completed is greater than or equal to 
the number of averages specified in averaging parameters. Otherwise, averaging 
done returns FALSE. averaging done is always TRUE if the selected averaging mode is No 
averaging. 

 

Note : Users can find more details about FRF VI program at the website of www.ni.com 

 

http://www.ni.com/


Users Manual of LabVIEW VI Prog. (5) 

PART 2.VI 
After FRF run, panel shows input and 
output signals and their FRFs in the tab.  
Based on the FRF results, the mode 
shape can be extracted. 

 

7) Set Analysis Type– to  “MODE 
SHPAE” 

8) Cursor – users can read the value of 
the plot using cursor. The 
movement of cursor can be done 
using mouse click or cursor 
operation button. 

9) Cursor operation button– users 
can move the cursor to find the 
peak value. 

10) Peak frequency– users can read 
the peak values here. 

11) Peak Values– five peak values can 
be obtained by repeating the step 
8, step 9 and step 10 on the tab of 
interest. 

12) Sensor Position (cm)– five 1D 
coordinates of sensors are from Y1 
to Y5 and Y6 is the coordinate of 
end point of structure.  

13) Run 

14) Mode Shape – animation of the 
mode shape will be appear 

15) Speed Controller – users can 
control the speed of the animation 

16) Stop- stop the animation of mode 
shape 
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Users Manual of LabVIEW VI Prog.(9) 

Captured video : The first mode shape of the tested beam 

Modal Analysis PART 2.VI 



Users Manual of LabVIEW VI Prog.(10) 

 In STEP1 of the case structure, the VI program reads physical input excitation 
and output response signals and compute FRFs and display them. 

 MATLAB script was used to divide the signals for the given FRF parameters 
(block size i.e. window size). 

STEP1-The First Stack of Block Diagram of PART2.VI 
 



Users Manual of LabVIEW VI Prog.(11) 

 In STEP2 of the case structure, the VI program reads the peak values which are 
selected and typed in by users and plots the mode shape 

 MATLAB was used to assemble and normalize the mode shape. 

 Animation of the moving mode shape will be presented. 

STEP2-The Second Stack of Block Diagram of PART2.VI 



  References 



References 

 Roy R. Craig, Jr. and Andrew J. Kurdila, “Fundamentals of Structural 
Dynamics”, 2nd Ed. Wiley 

 


